
Computational and Economic Limitations
of Dispatch Operations in the Next-Generation

Power Grid
Victor M. Zavala and Audun Botterud

Mathematics and Computer Science Division and Decision and Information Sciences Division, Argonne National Laboratory
9700 S Cass Avenue, Argonne, IL 60439, vzavala@mcs.anl.gov, abotterud@anl.gov

Abstract—We study the interactions between computational
and economic performance of dispatch operations under highly
dynamic environments. In particular, we discuss the need of
extending the forecast horizon of the dispatch formulation in
order to anticipate steep variations of renewable power and
highly elastic loads. We present computational strategies to solve
the increasingly larger optimization problems in real-time. To
illustrate the developments, we use a detailed dispatch model of
the entire Illinois interconnect with out-of-state wind generation.

I. INTRODUCTION

The next-generation power grid will be operated under
highly dynamic regimes including distributed storage and
co-generation, large-scale renewable generation, and highly
elastic loads. These resources act as fast disturbances that
need to be balanced out in the grid in real-time. Wind power
ramping events are already demanding more proactive and fast
operational systems [12]. This is illustrated in Fig. 1, where
we present typical profiles for the total load and wind power
at different adoption levels. As can be seen wind power supply
can fluctuate by an order of magnitude in a few minutes.
Similar trends are expected for the loads under smart grid
environments.

Economic dispatch (ED) is one of the most important
operational tasks in the power grid. The ED system updates
the output levels of the committed generators to match the load
demands in a cost-optimal manner. The solution has to satisfy
both transmission and generation ramping constraints [17].
This task is of great importance since it clears the real-time
market and sets the locational marginal prices (LMPs) [14].
The ED system is currently designed using forecast horizons
on the order of a couple of hours with a time resolution (i.e.;
time steps) of a few minutes. Under stable operations, this
horizon might be sufficient to capture load trends. However,
in the presence of steep trends such as those observed during
wind ramping events, the performance of the ED system might
deteriorate if it does not have enough foresight and resolution.
This can lead, for instance, to load and wind curtailment.

Increasing the foresight and resolution of the ED problem
comes at the expense of additional computational complexity.
The problem is usually cast as a large-scale linear or quadratic
optimization problem [18]. The main source of complexity is
the inherent transmission network that has to be accounted

0 20 40 60 80 100 120

10
4

10
5

Time [hr]

P
ow

er
 [M

W
]

Load

30% Wind

20% Wind

10% Wind

Fig. 1. Snapshot of total load and increasing levels of wind power.

for at each time step in the horizon. In addition, coupling
due to ramping constraints can render the problem intractable
for even a few time steps. While state-of-the-art optimization
solvers are currently able to solve large ED problems, scala-
bility bottlenecks are still a concern.

In this work, we analyze the interactions between economic
and computational performance of ED. We first analyze the
effect of increasing the horizon of the problem and discuss
the associated computational implications. In order to do this,
we present a detailed model for the Illinois interconnect. We
compare the performance of barrier and simplex optimization
solver. In particular, we identify scalability bottlenecks asso-
ciated with the core linear algebra kernels of the solvers. We
exploit the advantages of both barrier and simplex strategies,
and notions of model predictive control to derive effective
warm-starting strategies. The proposed developments can en-
able the implementation of detailed ED formulations under
tight solution time constraints.

II. ECONOMIC DISPATCH PROBLEM

We consider the traditional, social welfare formulation
where the objective is to minimize generation costs subject
to direct-current (DC) transmission and generation ramping

constraints. The ED problem has the form:

min
`+N∑
k=`

∑
j∈G

cj ·Gk,j (1a)

s.t. Gk+1,j = Gk,j + ∆Gk,j , k = `, ..., `+N − 1, j ∈ G
(1b)∑

(i,j)∈Lj

Pk,i,j +
∑
i∈Gj

Gk,i +
∑
i∈Wj

(Wk,i −∆Wk,i)

=
∑
i∈Dj

Dk,i, k = `, ..., `+N, j ∈ B

(1c)
Pk,i,j = bi,j(θk,i − θk,j), k = `, ..., `+N, (i, j) ∈ L

(1d)

Gminj ≤ Gk,j ≤ Gmaxj , k = `, ..., `+N, j ∈ G (1e)

∆Gminj ≤ ∆Gk,j ≤ ∆Gmaxj , k = `, ..., `+N − 1, j ∈ G
(1f)

Pmini,j ≤ Pk,i,j ≤ Pmaxi,j , k = `, ..., `+N, (i, j) ∈ L
(1g)

θminj ≤ θk,j ≤ θmaxj , k = `, ..., `+N, j ∈ B (1h)

0 ≤ ∆Wk,j ≤Wk,j , k = `, ..., `+N, j ∈ W (1i)

Here, ` is the real time index, k is the horizon time index,
and N is the number of time steps in the horizon. The sets
B,L,G,W , and D are the buses, lines, thermal generators,
wind generators, and load demands, respectively. Subindexed
sets in j represent subsets at bus j. The problem variables
are the thermal generation levels Gk,j , the ramp increments
∆Gk,j , the power flows Pk,i,j , the bus angles θk,j , and the
wind curtailment flows ∆Wk,j . The problem data are the load
demands Dk,j and wind power flows Wk,j . The multipliers of
the network constraint (1c) are the LMPs λk,j at time k and
bus j.

III. FORECAST HORIZON AND COST PERFORMANCE

At each time instant `, the ED problem is solved using
the observed and forecasted data for the load demands and
wind flows. The observed flows are W`,j , D`,j while W`+i,j ,
D`+i,j , i = 1, ..., N − 1 are forecasted. The solution of this
problem sets the generator levels for the current time step
G`,j with associated cost ϕMH

` =
∑
j∈G G`,j , and the LMPs

λj,`, j ∈ B. At the next time step `+1, the true loads and wind
power flows are observed and a new ED problem is solved to
obtain G`+1,j and ϕMH

`+1 . To manage the forecast horizon, it
is possible to use either a moving or a shrinking horizon ap-
proach. These approaches have advantages and disadvantages
from computational and implementation perspectives.

A. Moving Horizon

In the moving horizon approach, the horizon at time ` is
k = `, ..., ` + N . At the next step, the horizon is shifted
forward in time k = ` + 1, ..., ` + N + 1. This approach
has the computational advantage that the problem size remains
fixed. The horizon length is usually constrained by the solution
time which must match the time resolution (e.g.; two to five

minutes). From an implementation perspective, the horizon
needs to be shrunk towards the end of the bidding cycle
where the unit commitment decisions are made. The cycle
is usually 24 hours. Extending the horizon over the bidding
cycle can introduce a significant amount of uncertainty since
the minimum power outputs are determined after bidding. We
thus have that if the bidding cycle contains T time steps and
` = 0 at the beginning of the cycle, the horizon satisfies:

N =

{
N if `+N < T
T − ` if `+N ≥ T ` = 0, ..., T − 1. (2)

Warm-starting moving horizon problems is complicated be-
cause of the horizon shifting. Reusing the solution at ` to ini-
tialize problem at `+1 is somewhat beneficial but inconsistent.
This limits the achievable solution times.

B. Shrinking Horizon

In the shrinking horizon approach, the problem is solved
for the entire bidding cycle N = T and this is updated at
each step by dropping only the first element of the horizon
such that N = T − `, ` = 0, ..., T − 1. The advantages of
this approach is that it is consistent with the bidding cycle
and that it satisfies Bellman’s principle of optimality [1].
Bellman’s principle states that, under perfect foresight, the
solution profile obtained with horizon k = `, ..., T is optimal
for the problem with shrunk horizon k = ` + 1, ..., T . A
disadvantage of this approach is that the bidding cycle can
be extremely large compared to the time resolution of the
problem. For instance, if we use a resolution of 5 minutes,
a bidding cycle will contain T = 288 steps. However, as will
be shown in Section IV, Bellman’s principle can be exploited
to derive effective warm-starting strategies that can enable the
implementation of ED problems with high time resolutions
and long horizons.

The perfect foresight problem with N = T gives the best
possible cost trajectory ϕ`, ` = 0, ..., T over the bidding cycle.
For the moving horizon approach, we have that as N → T ,
the moving horizon cost approaches the optimal cost. The
convergence rate is problem dependent and thus difficult to
establish a priori. However, this property can be exploited to
derive hybrid moving-shrinking horizon strategies that do not
need to set N = T and can still exploit Bellman’s principle
to generate warm-starts. This approach has been proposed in
the model predictive control literature [6], [19].

IV. COMPUTATIONAL ISSUES

We can write the ED problem (1) in the general form:

min cTx (3a)
s.t.Ax = b (3b)
x ≥ 0. (3c)

Where x ∈ <n is the variable vector, A ∈ <m×n is the
Jacobian matrix, c ∈ <n is the cost vector and b ∈ <m is
the data. There exist highly efficient solvers that can be used
to solve large-scale problems of this form. To name a few,
we have the commercial solvers Cplex from IBM, Gurobi,

Mosek, and Knitro, and the non-commercial solvers Clp and
Ipopt from the COIN-OR repository http://www.coin-or.org.
Cplex, Gurobi, Mosek, and Clp are solvers targeted toward
linear and quadratic optimization problems. These solvers use
implementations of the primal and dual simplex method and of
Mehrotra’s predictor-corrector barrier method. Ipopt[16] and
Knitro[5] are barrier solvers for general nonlinear optimization
problems. The reason for considering these nonlinear solvers
in this study is that their linear algebra kernels are highly
efficient, making them ideal for large-scale applications. These
advantages will be explained in the following section.

A. Simplex Methods

The simplex method starts by partitioning the variable space
into basic and non-basic variables xT = [xTB x

T
N] with xB ∈

<m, xN ∈ <(n−m). With this, the Jacobian matrix can be
partitioned as A = [AB AN] where AB ∈ <m×m is a square
matrix and AN ∈ <m×(n−m). Similarly, the cost vector can
be partitioned as cT = [cTB c

T
N]. The optimality conditions of

(3) are:

c−ATλ− ν = 0 (4a)
Ax− b = 0 (4b)

xT ν = 0, x ≥ 0, c−ATλ ≥ 0, (4c)

where λ ∈ <m and ν ∈ <n are the constraint and bound
multipliers, respectively. In pseudo-code, the basic steps of
the simplex method are [2]:
• At iteration k = 0 Start with a non-singular basis A0

B ,
x0N = 0, and x0B ≥ 0. If basis not available, set A0

B ←
Im×m

• For iteration k ≥ 0 do,
1) Factorize basis AkB using LU decomposition to ob-

tain LkB , U
k
B or update existing factors Lk−1B , Uk−1B .

2) Compute basic variables by solving AkBx
k
B = b −

AkNx
k
N and multipliers by solving AkB

T
λk = cB

with available factors.
3) Check νkN = cN −AkN

T
λk ≥ 0. If it holds, solution

is optimal, otherwise, choose any variable xk,eN in
xkN for which νk,eN < 0 as an entering variable for
the basis.

4) Compute basis step by solving AkB∆xkB = AkN (:, e)
and ratios Θk = xkB/∆x

k
B . Here, AkN (:, e) is the e-

th column of AkN .
5) Apply ratio test to find leaving variable xk,lB with

Θk
l ≥ 0 such that xk+1

B = xkB + Θk
l ∆xkB ≥ 0.

6) Update Basis by setting AkB(:, l) ← AkN (:, e), set
xk,lB ← 0 and go to next step k ← k + 1.

In the above algorithm, the factorization step (1) is the
most computationally intensive step [11], [15]. Efficient LU
factorization routines (such as MA48 from Harwell) are used
to factorize the basis matrix which is sparse, unsymmetric, and
indefinite. The factorization time of this matrix will increase
with the horizon length and network complexity. Note that,
if a basis is not originally supplied, the algorithm can take a
very large number of iterations (on the order of m) to obtain a

feasible basis. Consequently, a large number of factorizations
and long computational times can be expected. Once a good
basis matrix has been identified, strategies such as the Forrest-
Tomlin and Golub-Bartels can be used to update the basis LU
factors inexpensively [8], [15]. In real-time applications, it is
thus critical to provide the algorithm with a good starting basis.

B. Barrier Methods

Another approach to solve the problem consists on relaxing
the complementarity conditions (4c) as xT (c − ATλ) =
µ e, µk ≥ 0 and apply Newton’s method directly to the
nonlinear optimality conditions. Here, e ∈ <n is a vector
of ones. The search step for the variables and multipliers is
computed simultaneously by solving the optimality conditions
for decreasing values of µk → 0. For fixed µk, the search
step at iteration j is computed from the solution of the linear
system:[

Σj AT

A

] [
∆xj

∆λj

]
= −

[
c−ATλj −Xjµke

Axj − b

]
, (5)

where Xj = diag(xj),V j = diag(νj), and Σj =

Xj−1V j . The bound multipliers are recovered from ∆νj =
−Xj−1(µe + V j∆xj) − νj . In the most basic setting, the
Newton iterations j > 0 try to converge to the solution x∗(µk)
and then µk is decreased. Some more advanced µ-updates can
be used.

The factorization of the matrix on the left-hand side
(Karush-Kuhn-Tucker matrix) is the most computationally
intensive step in the algorithm. Note that this matrix is
symmetric and indefinite and is much larger than the basis
matrix factorized in the simplex method (i.e.; (n+m)×(n+m)
against m ×m). To solve the linear system, two approaches
are normally used. The first one consists on eliminating the
step for the multipliers to form the normal equations:(

AΣj
−1
AT
)

∆λj = −
(
rjλ −A

jΣj
−1
rjx

)
, (6)

where rjx = −(c − ATλj − Xjµke) and rjλ = −(Axj − b).
The matrix on the left-hand side is known as the normal
matrix. The step for the primal variables is recovered from
∆xj = Σj

−1 (
rjx −AT∆λj

)
. If the Jacobian matrix A is

full-rank, then the normal matrix is positive definite. This
enables the application of a Cholesky factorization to obtain
factors of the form Lj and Lj

T . Even though the normal
matrix is significantly smaller (m×m) than the original KKT
matrix, forming the normal system might destroy the sparsity
of the original KKT matrix, making the Cholesky factorization
inefficient. This is the strategy used in most barrier solvers
specialized for linear optimization problems such as Cplex
[4], [3], Clp, and Mosek.

A more efficient approach that can be used to factorize the
KKT matrix consists on applying directly a saddle-point solver
such as MA57 [7] and Pardiso [13]. Saddle-point solvers have
advanced significantly in the last years and are capable of
solving very large systems efficiently. The key of this approach

−92 −90 −88

37

38

39

40

41

42

43

° Longitude W

°
La

tit
ud

e
N

Fig. 2. Illinois interconnect. Gray dots are generation buses.

is the ability to preserve and exploit the high degree of sparsity
of the KKT matrix.

A fundamental problem of interior-point solvers is that
they cannot exploit warm-start information efficiently [9].
This is because barrier methods proceed progressively from
the interior towards the boundary of the feasible region. On
the other hand, this also makes the number of iterations
insensitive to the problem size and number of variable bounds.
Consequently, these solvers are much more efficient than
simplex method when no warm-start information is provided.
In the following section, we will evaluate the performance of
barrier and simplex methods on large-scale ED problems. In
addition, we will propose strategies to exploit the advantages
of these competing approaches to accelerate the solutions.

V. ILLINOIS INTERCONNECT SET-UP

We have built an ED model using real data for the Illinois
interconnect. The system comprises 1900 buses, 2538 trans-
mission lines, 870 load nodes, and 261 generators. Out data
consists of detailed data for the network topology, ramp and
generation limits, fuel costs, and transmission lines specifi-
cations. The Illinois interconnect is sketched in Fig. 2. We
have added artificial wind power data in out-of-state buses to
simulate a nominal wind power adoption of 10%.

A. Economic Issues

We first analyze the effect of increasing the forecast horizon
in the ED formulation. We run the system using a moving
horizon approach for a single bidding cycle. In Fig. 3, we
plot cost savings as a function of horizon length using a one-
hour horizon as the reference. We use a time resolution of one
hour. As can be seen, significant savings can be realized by
extending the horizon over 8 hours. In addition, the optimal
cost can be reached with an horizon of around 10 hours. The
savings over the bidding cycle are around $100K. We have

1 6 12 18 24
0

1

2

3

4

5

6

7

8

9

10

11
x 10

4

Horizon Length [hr]

D
ai

ly
 S

av
in

gs
 [$

]

Fig. 3. Effect of horizon length on cost savings.

observed that the magnitude of the savings depend on the ramp
constraints, the initial conditions for the generators, and the
variability of the wind power and loads. Consequently, while
the overall trends are realistic, the actual savings should be
interpreted with care.

B. Computations Issues

The previous study suggests that increasing the horizon
of the ED formulation can bring increased performance. In
Table I and Fig. 4 we present the problem dimensions as
the horizon increases. In addition, we present solution times
with no warm-start for the Ipopt (version 3.8) and Cplex
(version 12.2) solvers. The Harwell subroutine MA57 was
used for factorization of the KKT matrix in IPOPT. The best
reordering strategy was nested dissection, implemented in the
Metis package [10]. The dual simplex method was used in
Cplex (Cplex-Dual). All calculations were obtained using a
quad-core Intel processor running Linux at 2.4 GHz.

The size of the problem increases linearly with the horizon
length. A problem with 24 time steps already contains more
than 100,000 variables. Most of the complexity comes from
the network constraints. However, it is interesting to observe
that, despite the network complexity, the problems are very
sparse and the sparsity increases with the problem size. Ipopt
has been found to be significantly more efficient than Cplex-
Dual in the case where no warm-start is supplied. In particular,
for a problem with 24 time steps, the solution time of Ipopt
is less than 3 minutes while that of Cplex is more than 11
minutes. The largest problem solved with Ipopt contains 28
time steps, 205,000 variables and can be solved in less than
10 minutes. We point out that the barrier method implemented
in Cplex was not competitive in solution time and robustness.
For instance, the solution of an ED problem with thee time
steps using Cplex-Barrier takes around two minutes. This
can be mainly attributed to the linear algebra kernel and

TABLE I
COMPUTATIONAL PERFORMANCE OF OPTIMIZATION SOLVERS (NO

WARM-START).

Nonzeros Ipopt Cplex-Dual
N n m Jacobian [%] CPUs - Iter CPUs - Iter

1 4272 4009 0.068 0.7 - 22 0.3 - 1154
3 12816 12027 0.024 4.2 - 36 4.5 - 5100
5 21360 20045 0.014 9.5 - 41 17.6 - 10312
10 42720 40090 0.007 36.0 - 46 120.1 - 25427
12 51264 48108 0.006 42.0 - 43 181.7 - 31191
16 68352 64144 0.005 94.1 - 51 344.7 - 46099
20 85440 80180 0.004 110.4 - 47 600.5 - 63737
24 102528 96216 0.003 163.8 - 50 679.3 - 68540

1 6 12 18 24
0

100

200

300

400

500

600

700

Horizon Length [−]

S
ol

ut
io

n
T

im
e

[s
]

Ipopt−MA57
Cplex−Dual

Fig. 4. Effect of horizon length on computational performance of optimiza-
tion solvers (no warm-start).

ill-conditioning of the KKT matrix. Unfortunately, since the
Cplex output display is limited, it is difficult to pinpoint
performance bottlenecks.

In Table II and Fig. 5 we present the performance of
the solvers when warm-start is provided. In this set-up, the
problems are solved with nominal wind power values to obtain
the initial solution. The wind power outputs are then perturbed
by 10% of their nominal value. When warm-started, Cplex
significantly outperforms Ipopt. In particular, note that for a
24 time step problem, Cplex takes 28 seconds while Ipopt
takes more than 2 minutes. It is particularly interesting to
observe that Cplex only requires 9 refactorizations of the basis
matrix. Another interesting observation is that the factorization
times of the KKT matrix are lower than those of the basis
matrix, despite the fact that the KKT matrix is twice as large.
This clearly illustrates the efficiency of MA57 and the Metis
reordering.

In Fig. 6 we analyze the robustness of the warm-starts
provided to the solvers. We solve a problem with six time steps
and perturb the wind power profiles by 10, 20, 30, 40, 50%

TABLE II
COMPUTATIONAL PERFORMANCE OF OPTIMIZATION SOLVERS
(WARM-START). TOTAL WIND POWER PERTURBATION OF 10%.

Ipopt Cplex
N CPUs - No. Refactorizations CPUs - No. Refactorizations

1 0.9 - 14 0.2 - 1
6 17.67 - 38 4.85 - 8

12 47.82 - 43 14.95 - 9
18 118.33 - 46 16.06 - 8
24 135.45 - 47 28.28 - 9

1 6 12 18 24
0

5

10

15

20

25

30

35

40

45

50

Horizon Length [−]

N
um

be
r

of
 R

ef
ac

to
riz

at
io

ns
 [−

]

Ipopt−MA57
Cplex−Dual

1 6 12 18 24
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Horizon Length [−]

T
im

e
pe

r
R

ef
ac

to
riz

at
io

n
[s

]

Ipopt−MA57
Cplex−Dual

Fig. 5. Effect of horizon length on computational performance of optimiza-
tion solvers (with warm-start).

of the nominal values. We have found that the basis matrix
can keep the solution times of Cplex relatively stable despite
the strong perturbations. Similar behavior has been observed
for perturbations in the loads. For a problem with 12 time
steps and a perturbation of 10% in all the bus loads, the
solution time goes down from 442 seconds with no warm-
start to 37 seconds with warm-start. In the warm-started case,
only 883 dual simplex iterations and four refactorizations are
needed. For a problem with 16 time steps the solution time
does down from 350 seconds to 50 seconds with only 4
refactorizations needed. Note that a perturbation of 10% in
the loads is of the same order as the forecast errors observed
in real operations. This result is important because it suggests
that we can construct basis matrices in advance (e.g.; one day
ahead using the forecasted load) and reuse them in real-time to
accelerate the solutions. Moreover, the warm-start basis matrix
can be constructed with barrier solvers such as Ipopt or Knitro
and this can be fed to the simplex solver to perform fast, real-
time LU updates.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a preliminary evaluation of the effects
of increasing the resolution of dispatch formulations. In par-

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

18

20

22

Wind Perturbation [%]

S
ol

ut
io

n
T

im
e

[s
]

Ipopt−MA57
Cplex−Dual

Fig. 6. Effect of data perturbations on solution times. Case with six time
steps in horizon.

ticular, it is clear that longer horizons are needed in more
dynamic operations as those expected in the next-generation
grid. We have tested the performance of two state-of-the-
art solvers implementing barrier and simplex methods in a
large-scale interconnect system. We have found that the basis
matrix in the simplex method is robust to data perturbations.
In addition, we have found that barrier solvers that directly
factorize the Karush-Kuhh-Tucker matrix scale well in large-
scale problems. These complementing advantages can be
used to derive warm-starting strategies to avoid computa-
tional bottlenecks. For instance, we suggest that warm-start
basis matrices should be constructed one bidding cycle in
advance using forecast information and re-used in real-time.
The presented computational analysis also sets a reference
for the expected performance of state-of-the-art solvers. This
is important in moving forward to more complex dispatch
formulations including real-time unit commitment, storage,
and transmission switching decisions.

ACKNOWLEDGMENT

This work was supported by the U.S. Department of Energy
through contract DE-AC02-06CH11357.

REFERENCES

[1] R. Bellman. Dynamic Programming. Dover, New York, 1972.
[2] R. E. Bixby. Implementing the simplex method: The initial basis.

Technical Report ADA453079, Rice University, http://handle.dtic.mil/
100.2/ADA453079, 1991.

[3] R. E. Bixby. Solving real-world linear programs: A decade and more
of progress. Operations Research, 50:3–15, 2002.

[4] R. E. Bixby, J. W. Gregory, I. J. Lustig, R. E. Marsten, and D. F. Shanno.
Very large-scale linear programming: A case study in combining interior
point and simplex methods. Operations Research, 40:885–897, 1992.

[5] R. H. Byrd, J. Gilbert, and J. Nocedal. A trust-region method based
on interior-point techniques for nonlinear programming. Mathematical
Programming, 89:149–185, 2000.

[6] M. Diehl, H. J. Ferreau, and N. Haverbeke. Efficient numerical methods
for nonlinear MPC and moving horizon estimation. In Nonlinear Model
Predictive Control, pages 391–417, 2009.

[7] I. S. Duff. Ma57 - a code for the solution of sparse symmetric definite
and indefinite systems. ACM Transactions on Mathematical Software,
30:118–144, 2004.

[8] J. J. H. Forrest and J. A. Tomlin. Updated triangular factors of the basis
to maintain sparsity in the product form simplex method. Mathematical
Programming, 2:263–278, 1972.

[9] J. Gondzio and A. Grothey. Reoptimization with the primal-dual interior
point method. SIAM J. Opt., 13:842–864, 2003.

[10] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM J. Sci. Comput., 20:359–392, 1999.

[11] R. Luce, J. Duintjer, M. Groetschel, T. Koch, J. Liesen, R. Nabben, and
O. Schenk. On the linear algebra kernel of simplex-based LP solvers.
Technical report, Technical University of Berlin, Preprint, http://www.
math.tu-berlin.de/∼nabben/Publikation/lasimp08.pdf, 2008.

[12] C. Monteiro, R. Bessa, V. Miranda, A. Boterrud, J. Wang, and G. Conzel-
mann. Wind power forecasting: state-of-the-art 2009. Technical report,
INESC Porto and Argonne National Laboratory, 2009.

[13] O. Schenk, A. Wächter, and M. Hagemann. Matching-based prepro-
cessing algorithms to the solution of saddle-point problems in large-
scale nonconvex interior-point optimization. J. Comp. Opt. and App.,
36:321–341, 2007.

[14] M. Shahidehpour, H. Yamin, and Z. Li. Market Operations in Electric
Power Systems: Forecasting, Scheduling, and Risk Management. Wi-
ley, New York, NY, 2002.

[15] L. M. Suhl and U. H. Suhl. A fast LU update for linear programming.
Annals of Operations Research, 43:33–47, 1993.

[16] A. Wächter and L. T. Biegler. On the implementation of a primal-
dual interior point filter line search algorithm for large-scale nonlinear
programming. Mathematical Programming, 106:25–57, 2006.

[17] C. Wang and S. M. Shahidehpour. Effects of ramp-rate limits on unit
commitment and economic dispatch. IEEE Transactions on Power
Systems, 8:1341–1350, 1993.

[18] A. J. Wood and B. F. Wollenberg. Power Generation, Operation and
Control. Wiley, New York, NY, 1994.

[19] V. M. Zavala, C. D. Laird, and L. T. Biegler. Fast implementations and
rigorous models: Can both be accomodated in NMPC? Int. J. Robust
Nonlinear Control, 18:800–815, 2008.

(To be removed before publication) The submitted manuscript has been created
by the University of Chicago as Operator of Argonne National Laboratory
(“Argonne”) under Contract No. DE-AC02-06CH11357 with the U.S. Department
of Energy. The U.S. Government retains for itself, and others acting on its behalf,
a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public, and perform publicly and
display publicly, by or on behalf of the Government.

